首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Deficient metabolic utilization of hydrogen peroxide in Trypanosoma cruzi.
Authors:A Boveris  H Sies  E E Martino  R Docampo  J F Turrens  and A O Stoppani
Abstract:The glutathione peroxidase-glutathione reductase system, an alternative pathway for metabolic utilization of H2O2 Chance, Sies & Boveris (1979) Physiol. Rev. 59, 527-605], was investigated in Trypanosoma cruzi, an organism lacking catalase and deficient in peroxidase Boveris & Stoppani (1977) Experientia 33, 1306-1308]. The presence of glutathione (4.9 +/- 0.7 nmol of reduced glutathione/10(8) cells) and NADPH-dependent glutathione reductase (5.3 +/- 0.4 munit/10(8) cells) was demonstrated in the cytosolic fraction of the parasite, but with H2O2 as substrate glutathione peroxidase activity could not be demonstrated in the same extracts. With t-butyl hydroperoxide or cumene hydroperoxide as substrate, a very low NADPH-dependent glutathione peroxidase activity was detected (equivalent to 0.3-0.5 munit of peroxidase/10(8) cells, or about 10% of glutathione reductase activity). Blank reactions of the glutathione peroxidase assay (non-enzymic oxidation of glutathione by hydroperoxides and enzymic oxidation of NADPH) hampered accurate measurement of peroxidase activity. The presence of superoxide dismutase and ascorbate peroxidase activity in, as well as the absence of catalase from, epimastigote extracts was confirmed. Ascorbate peroxidase activity was cyanide-sensitive and heat-labile, but no activity could be demonstrated with diaminobenzidine, pyrogallol or guaiacol as electron donor. The summarized results support the view that T. cruzi epimastigotes lack an adequate enzyme defence against H2O2 and H2O2-related free radicals.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号