Abstract: | The effect of monovalent cations on the purified AMP nucleosidase (AMP phosphoribohydrolase, EC 3.2.2.4) from Azotobacter vinelandii was investigated. All the monovalent cations were activators of the enzyme: Rb+ and Cs+ were the most effective, followed by K+, Na+, NH4+ and Li+ in that order. The apparent Ka for MgATP and nH values (Hill's interaction coefficient) decreased from 0.9 to 0.1 mM, and from 4 to 1, respectively, with the increase in K+ concentration, suggesting that the cation effects are on MgATP binding rather than catalysis. Gel filtration studies have revealed that the enzyme forms a non-dissociable enzyme species with a Stokes radius of 6.0--6.2 nm in the presence of saturating concentrations of monovalent cations, which can be distinguished from the 5.5-nm enzyme species showing temperature-dependent dissociation of the molecule in sulfate or phosphate. These results suggest that these ligands affect the association of the subunits through changes in the environment of the hydrophobic side chains of the enzyme molecules. |