Myristoylation is required for human immunodeficiency virus type 1 Gag-Gag multimerization in mammalian cells |
| |
Authors: | Li Hua Dou Jun Ding Lingmei Spearman Paul |
| |
Affiliation: | Department of Pediatrics, Emory University, Atlanta, GA 30322, USA. |
| |
Abstract: | The Gag protein of human immunodeficiency virus type 1 directs the virion assembly process. Gag proteins must extensively multimerize during the formation of the spherical immature virion shell. In vitro, virus-like particles can be generated from Gag proteins that lack the N-terminal myristic acid modification or the nucleocapsid (NC) protein. The precise requirements for Gag-Gag multimerization under conditions present in mammalian cells, however, have not been fully elucidated. In this study, a Gag-Gag multimerization assay measuring fluorescence resonance energy transfer was employed to define the Gag domains that are essential for homomultimerization. Three essential components were identified: protein-protein interactions contributed by residues within both the N- and C-terminal domains of capsid (CA), basic residues in NC, and the presence of myristic acid. The requirement of myristic acid for multimerization was reproduced using the heterologous myristoylation sequence from v-src. Only when a leucine zipper dimerization motif was placed in the position of NC was a nonmyristoylated Gag protein able to multimerize. These results support a three-component model for Gag-Gag multimerization that includes membrane interactions mediated by the myristoylated N terminus of Gag, protein-protein interactions between CA domains, and NC-RNA interactions. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|