首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Coupling of the oxygen-linked interaction energy for inositol hexakisphosphate and bezafibrate binding to human HbA0
Authors:Coletta M  Angeletti M  Ascenzi P  Bertollini A  Della Longa S  De Sanctis G  Priori A M  Santucci R  Amiconi G
Institution:Department of Experimental Medicine and Biochemical Sciences, University of Roma Tor Vergata, Via di Tor Vergata 135, I-00133 Roma, Italy. coletta@seneca.uniroma2.it
Abstract:The energetics of signal propagation between different functional domains (i.e. the binding sites for O2, inositol hexakisphospate (IHP), and bezafibrate (BZF)) of human HbA0 was analyzed at different heme ligation states and through the use of a stable, partially heme ligated intermediate. Present data allow three main conclusions to be drawn, and namely: (i) IHP and BZF enhance each others binding as the oxygenation proceeds, the coupling free energy going from close to zero in the deoxy state to -3.4 kJ/mol in the oxygenated form; (ii) the simultaneous presence of IHP and BZF stabilizes the hemoglobin T quaternary structure at very low O2 pressures, but as oxygenation proceeds it does not impair the transition toward the R structure, which indeed occurs also under these conditions; (iii) under room air pressure (i.e. pO2 = 150 torr), IHP and BZF together induce the formation of an asymmetric dioxygenated hemoglobin tetramer, whose features appear reminiscent of those suggested for transition state species (i.e. T- and R-like tertiary conformation(s) within a quaternary R-like structure).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号