首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biotic and abiotic controls on iron oxyhydroxide formation in the gill chamber of the hydrothermal vent shrimp Rimicaris exoculata
Authors:C SCHMIDT  L CORBARI  F GAILL  N LE BRIS
Institution:Systématique, Adaptation, Evolution, UniversitéPierre et Marie Curie-Paris 6, Paris, France;
CNRS, UMR 7138, AMEX, UPMC, IRD, MNHN, Paris Cedex, France;
Département EEP, IFREMER, BP 70, Plouzane, France;
Département Systématique et Evolution, Museum National d'Histoire Naturelle, Equipe, Espèces et Spéciation, UMR7138, Paris, France
Abstract:A unique feature of the shrimp, Rimicaris exoculata , from the Rainbow hydrothermal vent field is the abundance of iron oxyhydroxides in its branchial chamber. These minerals accumulate throughout the molting cycle and are intimately associated with the shrimps' epibiotic microflora. In this study, an enhancement of the iron oxidation rate through shrimp swarms in the vicinity of vents is highlighted. This process is sustained by the high molting frequency of the shrimp, and potentially has large biogeochemical and ecological consequences for the associated hydrothermal ecosystem. The calculated rate for abiotic (homogeneous and heterogeneous) iron oxidation suggests that autocatalytic oxidation is the predominant reaction pathway leading to the accumulation of iron oxyhydroxides throughout the molting cycle. The occurrence of iron-oxidizing bacteria is not excluded, but their growth is most probably restricted to the first molting stage when competition with the abiotic iron oxidation is low. The influence of epibiont activity on local oxygen conditions and on the surface properties of the formed mineral, combined with the position of the shrimp in the hydrothermal mixing gradient, is expected to drive the relative contribution of abiogenic and biogenic iron oxidation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号