首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An in vivo analysis of photosynthesis during short-term O3 exposure in three contrasting species
Authors:P K Farage  S P Long
Institution:(1) Department of Biology, University of Essex, Wivenhoe Park, CO4 3SQ Colchester, Essex, UK
Abstract:The depressions of photosynthetic CO2 uptake following O3 exposures of 200 and 400 nmol mol-1 for between 4 and 16 h were compared between Pisum sativum, Quercus robur and Triticum aestivum, and the potential causes of change identified in vivo. Photosynthetic change was examined by analysis of CO2, O2, O3 and water vapour exchanges together with chlorophyll fluorescence in controlled environments. Under identical fumigation conditions, each species showed very similar rates of O3 consumption. The light-saturated rate of CO2 uptake showed a statistically significant decrease in each species with increasing O3 dose. Although stomatal conductance declined in parallel with CO2 uptake this did not account for the observed decrease in photosynthesis. The decrease in mesophyll conductance resulted primarily from a decrease in the apparent carboxylation capacity, implying in decreased activity of ribulose 1,5-bisphosphate carboxylase/oxygenase. The maximum capacity of carboxylation was consequently reduced by over 30% and 50% after 16 h fumigation with 200 and 400 nmol mol-1 O3 respectively. Additionally, in Q. robur, a statistically significant inhibition of the CO2 saturated rate of photosynthesis occurred after 16 h with 400 nmol mol-1 O3, suggesting that the ability to regenerate ribulose 1,5-bisphosphate was also impaired. None of the species showed any significant decrease in the efficiency of light-limited photosynthesis following fumigation at 200 nmol mol-1 O3, but effects were apparent at 400 nmol mol-1 O3. The common feature in all three species was a decline in carboxylation capacity which preceded any other change in the photosynthetic apparatus.Abbreviations Asat net CO2 uptake rate per unit leaf area at light saturation - A net CO2 uptake rate per unit leaf area - Amax net CO2 uptake rate per unit leaf area at CO2 and light saturation - ci mole fraction of CO2 in the intercellular air space - gs stomatal conductance to CO2 - Fm maximum chlorophyll fluorescence - Fv variable chlorophyll fluorescence - phgrc quantum yield of CO2 uptake for absorbed light - phgr0 quantum yield of oxygen evolution for incident light - PPFD photosynthetically active radiation - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - Vcmax maximum rate of carboxylation
Keywords:atmospheric change  leaf gas exchange  Rubisco  stomata
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号