首页 | 本学科首页   官方微博 | 高级检索  
     


Structural and biochemical analyses of concanavalin A circular permutation by jack bean asparaginyl endopeptidase
Authors:Samuel G. Nonis  Joel Haywood  Jason W. Schmidberger  Emily R. R. Mackie  Tatiana P. Soares da Costa  Charles S. Bond  Joshua S. Mylne
Affiliation:1. School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia;2. The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, Australia;3. Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
Abstract:Over 30 years ago, an intriguing posttranslational modification was found responsible for creating concanavalin A (conA), a carbohydrate-binding protein from jack bean (Canavalia ensiformis) seeds and a common carbohydrate chromatography reagent. ConA biosynthesis involves what was then an unprecedented rearrangement in amino-acid sequence, whereby the N-terminal half of the gene-encoded conA precursor (pro-conA) is swapped to become the C-terminal half of conA. Asparaginyl endopeptidase (AEP) was shown to be involved, but its mechanism was not fully elucidated. To understand the structural basis and consequences of circular permutation, we generated recombinant jack bean pro-conA plus jack bean AEP (CeAEP1) and solved crystal structures for each to 2.1 and 2.7 Å, respectively. By reconstituting conA biosynthesis in vitro, we prove CeAEP1 alone can perform both cleavage and cleavage-coupled transpeptidation to form conA. CeAEP1 structural analysis reveals how it is capable of carrying out both reactions. Biophysical assays illustrated that pro-conA is less stable than conA. This observation was explained by fewer intermolecular interactions between subunits in the pro-conA crystal structure and consistent with a difference in the prevalence for tetramerization in solution. These findings elucidate the consequences of circular permutation in the only posttranslation example known to occur in nature.

Revisiting the historically important plant protein concanavalin A and reconstituting its biosynthesis in vitro reveals the advantages of its unusual biosynthesis via circular permutation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号