首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Potassium Transport in Enteromorpha intestinalis (L.) Link: MEASUREMENT OF INTRACELLULAR K+, EXCHANGE FLUXES AND THERMODYNAMIC ANALYSIS
Authors:RITCHIE  RAYMOND J; LARKUM  A W D
Abstract:Potassium transport has been studied in the marine euryhalinealga, Enteromorpha intestimlis cultured in seawater and in low-salinitymedium (Artificial Cape Banks Spring Water, ACBSW; 25·5mol m–3 Cl, 20·4 mol m–3 Na+, 0·5mol m–3 K+). K+ fluxes were measured using 42K+ and 86Rb+although 86Rb+ does not act as an efficient K+ analogue in thisplant. 42K+ experiments on seawater plants typically exhibiteda single protoplasmic exchange phase whereas 86Rb+ exhibitedtwo exchange phases. Compartmental analysis of 86Rb+ effluxexperiments on seawater-grown Enteromorpha plants were usedto deduce the intracellular partition of K+ between the cytoplasm(279±38 mMolal) and vacuole (405±68 mMolal). Theplasmalemma K+ flux in plants in seawater was greater in thelight than in the dark (563±108 nmol m–2 s–1versus 389±66·7 nmol m–2 s–1). Inlow-salinity plants, separate cytoplasmic and vacuolar exchangephases were apparent. Analysis of 42K+ efflux experiments onlow-salinity plants yielded a cytoplasmic K+ of 222±38mMolal and a vacuolar K+ of 82±11 mMolal. The plasmalemmaand tonoplast flux was 23±4·5 nmol m–2 s–1. The Nernst equation showed that, although K+ was close to electrochemicalequilibrium, active accumulation of K+ across the plasmalemmaoccurred in plants in seawater and ACBSW both in the light anddark. K+ was also actively transported inwards across the tonoplastin low-salinity plants. The electrochemical potential for K+across the plasmalemma ranged from 2·41±0·60kJ mol–1 in plants grown in seawater in the light to 5·79±0·87kJ mol–1 for plants in ACBSW in the light. Although K+is close to electrochemical equilibrium, the flux of K+ in plantsin both seawater and ACBSW media is high, hence the power consumptionof K+ transport is high. The permeability of K+ (PK+) was significantlyhigher in the light than in the dark in plants in seawater (about7·0 versus 2·5 nm s–1) but in plants inlow-salinity (ACBSW) medium the permeability was independentof light (about 12 nm s–1). The energy requirements ofactive K+ transport by ATP-dependent pumps is discussed. Key words: Enteromorpha, Potassium transport, Ionic relations, Saltwater, Low salinity, Thermodynamics
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号