首页 | 本学科首页   官方微博 | 高级检索  
     


Monoclonal antibodies to rabbit skeletal muscle phosphorylase kinase. Probes for studies of subunit function
Authors:Z Hessová  R Thieleczek  M Varsányi  F W Falkenberg  L M Heilmeyer
Abstract:Monoclonal antibodies to rabbit skeletal muscle phosphorylase kinase were produced by the conventional hybridoma cell technique. 90 out of 600 hybridomas were found to produce phosphorylase kinase binding antibodies from which only five secreted also phosphorylase kinase activity affecting antibodies. Three of them were cloned; two hybridomas resisted all cloning efforts. Employing immunoblot technique all monoclonal antibodies show cross-reactivity with the alpha, beta, and gamma subunits of phosphorylase kinase indicating that similar, if not identical, epitopes are present on these three subunits. No cross-reactivity with delta is observed. Monoclonal antibodies secreted by two clones which bind to the alpha subunit stimulate the Ca2+-independent A0 activity of phosphorylase kinase more than 30-fold, whereas all other monoclonal antibodies obtained are ineffective in this respect. Monoclonal antibodies binding to the beta subunit inhibit the Ca2+-dependent activities significantly. Antibody produced by one hybridoma binds to the alpha, beta, and gamma subunits with approximately the same affinity. Based on the dual function of calmodulin in phosphorylase kinase (Hessová, Z., Varsányi, M., and Heilmeyer, L.M.G., Jr. (1985) Eur. J. Biochem. 146, 107-115) we conclude that binding of anti-alpha monoclonal antibodies to a regulatory domain in the alpha subunit results in an uncoupling of the inhibitory function of the Ca2+-free delta from the holoenzyme which leads to a concomitant increase in A0 activity. Furthermore, binding of anti-beta monoclonal antibodies to the beta subunit prevents a signal transfer from the Ca2+-saturated delta to the catalytic site of the holoenzyme which inhibits the Ca2+-dependent activities.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号