首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Energy crosstalk between photosynthesis and the algal CO2-concentrating mechanisms
Institution:1. Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA;2. Department of Biology, Stanford University, Stanford, CA 94305, USA;3. Aix-Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France;1. Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany;1. National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China;1. Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany;2. Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria;1. Department of Biotechnology, Dolphin (P.G.) Institute of Biomedical and Natural Sciences, Dehradun 248007, India;2. Joint Institute for High Temperatures of the Russian Academy of Sciences, 13/2 Izhorskaya St, Moscow 125412, Russia;3. Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India;1. National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil;2. Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria;3. Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;1. Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India;2. Plant Microbe Interaction Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India;3. Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, Uttar Pradesh 211002, India;4. Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional, Irapuato 36821, México;5. Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, TX 79409, USA;6. Laboratorio de Biología del Desarrollo Vegetal, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, México
Abstract:Microalgal photosynthesis is responsible for nearly half of the CO2 annually captured by Earth’s ecosystems. In aquatic environments where the CO2 availability is low, the CO2-fixing efficiency of microalgae greatly relies on mechanisms – called CO2-concentrating mechanisms (CCMs) – for concentrating CO2 at the catalytic site of the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). While the transport of inorganic carbon (Ci) across membrane bilayers against a concentration gradient consumes part of the chemical energy generated by photosynthesis, the bioenergetics and cellular mechanisms involved are only beginning to be elucidated. Here, we review the current knowledge relating to the energy requirement of CCMs in the light of recent advances in photosynthesis regulatory mechanisms and the spatial organization of CCM components.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号