首页 | 本学科首页   官方微博 | 高级检索  
     


Non-host volatiles mediate associational resistance to the pine processionary moth
Authors:H. Jactel  G. Birgersson  S. Andersson  F. Schlyter
Affiliation:(1) Laboratory of Forest Entomology and Biodiversity, INRA, UMR 1202, Biodiversity Genes and Communities, 33610 Cestas, France;(2) Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences (SLU), PO Box 102, 230 53 Alnarp, Sweden
Abstract:An increasing body of evidence indicates that the association between different plant species may lead to a reduction in insect herbivory, i.e. associational resistance. This might be due to a top–down regulation of herbivores by increased numbers of natural enemies or to a disruptive bottom–up influence of lower host plant accessibility. In particular, the richer plant communities release more diverse plant odours that may disturb olfactory-guided host choice and mating behaviour of insect herbivores, i.e. the “semiochemical diversity hypothesis”. However, this hypothesis has been rarely tested experimentally in natural habitats, notably forest ecosystems. We tested the effects of non-host volatiles (NHV) on mate and host location by the pine processionary moth (PPM) at the scale of individual pine trees with branches of non-host tree (birch) at their base. Pheromone trap catches and the numbers of larval nests were both reduced by non-host presence under treated pine trees, confirming an associational resistance mediated by NHV. In both males and females, the antenna could detect several birch volatiles, including methyl salicylate (MeSa). MeSa inhibited the attraction of the PPM male to pheromone traps, as did bark and leaf chips from birch trees. Our test of three doses of MeSa at the habitat scale (50 m forest edges) showed that the reduction in the numbers of male PPM captured in traps and in larval nests was MeSa dose-dependent. These results show that odours released by deciduous non-host trees can reduce herbivory by a forest defoliator in conifers, providing support to the “semiochemical diversity hypothesis” as a mechanism of associational resistance.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号