首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Oligodendrocytes support axonal transport and maintenance via exosome secretion
Authors:Carsten Frühbeis  Wen Ping Kuo-Elsner  Christina Müller  Kerstin Barth  Leticia Peris  Stefan Tenzer  Wiebke Mbius  Hauke B Werner  Klaus-Armin Nave  Dominik Frhlich  Eva-Maria Krmer-Albers
Abstract:Neurons extend long axons that require maintenance and are susceptible to degeneration. Long-term integrity of axons depends on intrinsic mechanisms including axonal transport and extrinsic support from adjacent glial cells. The mechanisms of support provided by myelinating oligodendrocytes to underlying axons are only partly understood. Oligodendrocytes release extracellular vesicles (EVs) with properties of exosomes, which upon delivery to neurons improve neuronal viability in vitro. Here, we show that oligodendroglial exosome secretion is impaired in 2 mouse mutants exhibiting secondary axonal degeneration due to oligodendrocyte-specific gene defects. Wild-type oligodendroglial exosomes support neurons by improving the metabolic state and promoting axonal transport in nutrient-deprived neurons. Mutant oligodendrocytes release fewer exosomes, which share a common signature of underrepresented proteins. Notably, mutant exosomes lack the ability to support nutrient-deprived neurons and to promote axonal transport. Together, these findings indicate that glia-to-neuron exosome transfer promotes neuronal long-term maintenance by facilitating axonal transport, providing a novel mechanistic link between myelin diseases and secondary loss of axonal integrity.

The long-term integrity of neuronal axons depends on intrinsic mechanisms such as axonal transport and on extrinsic support from adjacent glial cells. This study shows that genetic defects in glia that affect axonal integrity impair the secretion of oligodendrocyte exosomes and their ability to support nutrient-deprived neurons and promote axonal transport.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号