首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hints on the evolutionary design of a dimeric RNase with special bioactions.
Authors:A Di Donato  V Cafaro  I Romeo  and G D'Alessio
Institution:Dipartimento di Chimica Organica e Biologica, Università di Napoli Federico II, Naples, Italy.
Abstract:Residues P19, L28, C31, and C32 have been implicated (Di Donato A, Cafaro V, D'Alessio G, 1994, J Biol Chem 269:17394-17396; Mazzarella L, Vitagliano L, Zagari A, 1995, Proc Natl Acad Sci USA: forthcoming) with key roles in determining the dimeric structure and the N-terminal domain swapping of seminal RNase. In an attempt to have a clearer understanding of the structural and functional significance of these residues in seminal RNase, a series of mutants of pancreatic RNase A was constructed in which one or more of the four residues were introduced into RNase A. The RNase mutants were examined for: (1) the ability to form dimers; (2) the capacity to exchange their N-terminal domains; (3) resistance to selective cleavage by subtilisin; and (4) antitumor activity. The experiments demonstrated that: (1) the presence of intersubunit disulfides is both necessary and sufficient for engendering a stably dimeric RNase; (2) all four residues play a role in determining the exchange of N-terminal domains; (3) the exchange is the molecular basis for the RNase antitumor action; and (4) this exchange is not a prerequisite in an evolutionary mechanism for the generation of dimeric RNases.
Keywords:antitumor  domain exchange  mutagenesis  protein engineering  ribonuclease
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号