首页 | 本学科首页   官方微博 | 高级检索  
     


Convergence and divergence of cones onto bipolar cells in the central area of cat retina
Authors:E Cohen  P Sterling
Affiliation:Department of Anatomy, University of Pennsylvania, Philadelphia 19104.
Abstract:In the central area of cat retina the cone bipolar cells that innervate sublamina b of the inner plexiform layer comprise five types, four with narrow dendritic fields and one with a wide dendritic field. This was shown in the preceding paper (Cohen & Sterling 1990 a) by reconstruction from electron micrographs of serial sections. Here we show by further analysis of the same material that the coverage factor (dendritic spread x cell density) is about one for each of the narrow-field types (b1, b2, and b4). The same is probably true for the other narrow-field type (b3), but this could not be proved because its dendrites were too fine to trace. The dendrites of types b1, b2, and b4 collect from all the cone pedicles within their reach and do not bypass local pedicles in favour of more distant ones. The dendrites of type b5, the wide-field cell, bypass many pedicles. On average 5.1 +/- 1.0 pedicles coverage on a b1 bipolar cell; 6.0 +/- 1.2 converge on a b2 cell and 5.7 +/- 1.5 converge on a b4 cell. Divergence within a type is minimal: one pedicle contacts only 1.2 b1 cells, 1.0 b2 cells, and 1.0 b4 cells. Divergence across types is broad: each pedicle apparently contacts all four types of the narrow-field bipolar cells that innervate sublamina b. Each pedicle probably also contacts an additional 4-5 types of narrow-field bipolar cell that innervate sublamina a. There are several possible advantages to encoding the cone signal into multiple, parallel, narrow-field pathways.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号