首页 | 本学科首页   官方微博 | 高级检索  
   检索      


N-Glycosylation of laminin-332 regulates its biological functions. A novel function of the bisecting GlcNAc
Authors:Kariya Yoshinobu  Kato Rika  Itoh Satsuki  Fukuda Tomohiko  Shibukawa Yukinao  Sanzen Noriko  Sekiguchi Kiyotoshi  Wada Yoshinao  Kawasaki Nana  Gu Jianguo
Institution:Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Sendai, Miyagi 981-8558, Japan.
Abstract:Laminin-332 (Lm332) is a large heterotrimeric glycoprotein that has been identified as a scattering factor, a regulator of cancer invasion as well as a prominent basement membrane component of the skin. Past studies have identified the functional domains of Lm332 and revealed the relationships between its activities and the processing of its subunits. However, there is little information available concerning the effects of N-glycosylation on Lm332 activities. In some cancer cells, an increase of beta1,6-GlcNAc catalyzed by N-acetylglucosaminyltransferase V (GnT-V) is related to the promotion of cancer cell motility. By contrast, bisecting GlcNAc catalyzed by N-acetylglucosaminyltransferase III (GnT-III) suppresses the further processing with branching enzymes, such as GnT-V, and the elongation of N-glycans. To examine the effects of those N-glycosylations to Lm332 on its activities, we purified Lm332s from the conditioned media of GnT-III- and GnT-V-overexpressing MKN45 cells. Lectin blotting and mass spectrometry analyses revealed that N-glycans containing the bisecting GlcNAc and beta1,6-GlcNAc structures were strongly expressed on Lm332 purified from GnT-III-overexpressing (GnT-III-Lm332) and GnT-V-overexpressing (GnT-V-Lm332) cells, respectively. Interestingly, the cell adhesion activity of GnT-III-Lm332 was apparently decreased compared with those of control Lm332 and GnT-V-Lm332. In addition, the introduction of bisecting GlcNAc to Lm332 resulted in a decrease in its cell scattering and migration activities. The weakened activities were most likely derived from the impaired alpha3beta1 integrin clustering and resultant focal adhesion formation. Taken together, our results clearly demonstrate for the first time that N-glycosylation may regulate the biological function of Lm332. This finding could introduce a new therapeutic strategy for cancer.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号