首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of abscisic acid on the cell cycle in the growing maize root
Authors:Mathias L Müller  Peter W Barlow  Paul-Emile Pilet
Institution:(1) Institute of Plant Biology and Physiology, University of Lausanne, Biology Building, CH-1015 Lausanne, Switzerland;(2) Department of Agricultural Sciences, University of Bristol, Institute of Arable Crops Research, Long Ashton Research Station, BS18 9AF Bristol, UK;(3) Present address: Sinsheimer Laboratories, University of California, Santa Cruz, 95064 Santa Cruz, CA, USA
Abstract:The mechanism by which the rate of cell proliferation is regulated in different regions of the root apical meristem is unknown. The cell populations comprising the root cap and meristem cycle at different rates, proliferation being particularly slow in the quiescent centre. In an attempt to detect the control points in the cell cycle of the root apical meristem of Zea mays L. (cv. LG 11), quiescent-centre cells were stimulated to synthesise DNA and to enter mitosis either by decapping or by immersing intact roots in an aqueous 3,3-dimethyl-glutaric acid buffer solution. From microdensitometric and flow-cytometric data, we conclude that, upon immersion, the G2 phase of the cell cycle of intact roots was shortened. However, when 50 mgrM abscisic acid (ABA) was added to the immersion buffer, parameters of the cell cycle were restored to those characteristic of intact roots held in a moist atmosphere. On the other hand, decapping of primary roots preferentially shortened the G1 phase of the cell cycle in the quiescent centre. When supplied to decapped roots, ABA reversed this effect. Therefore, in our model, applied ABA retarded the completion of the cell cycle and acted upon the exit from either the G1 or the G2 phase. Immersion of roots in buffer alone seems to trigger cells to more rapid cycling and may do so by depleting the root of some ABA-like factor.Abbreviations ABA cis-abscisic acid - DGA 3,3-dimethyl-glutaric acid - DAPI 4prime,6-diamidino-2-phenylindole - LI labelling index We thank Pierre Zaech of the Ludwig Institute, Epalinges, Switzerland, for expert assistance in flow cytometry and Dr. Jean-Marcel Ribaut of our Institute for providing data on exodiffusion and metabolism of ABA.
Keywords:Abscisic acid  Cell cycle regulation  Flow cytometry  Quiescent centre  Zea
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号