首页 | 本学科首页   官方微博 | 高级检索  
     


Optopharmacological control of TRPC channels by coumarin-caged lipids is associated with a phototoxic membrane effect
Authors:Oleksandra Tiapko  Bernadett Bacsa  Gema Guedes de la Cruz  Toma Glasnov  Klaus Groschner
Abstract:Photouncaging of second messengers has been successfully employed to gain mechanistic insight of cellular signaling pathways. One of the most enigmatic processes of ion channel regulation is lipid recognition and lipid-gating of TRPC channels, which represents pivotal mechanisms of cellular Ca2+ homeostasis. Recently, optopharmacological tools including caged lipid mediators became available, enabling an unprecedented level of temporal and spatial control of the activating lipid species within a cellular environment. Here we tested a commonly used caged ligand approach for suitability to investigate TRPC signaling at the level of membrane conductance and cellular Ca2+ handling. We report a specific photouncaging artifact that is triggered by the cage structure coumarin at UV illumination. Electrophysiological characterization identified a light-dependent membrane effect of coumarin. UV light (340 nm) as used for photouncaging, initiated a membrane conductance specifically in the presence of coumarin as low as 30 μmol L-1 concentrations. This conductance masked the TRPC3 conductance evoked by photouncaging, while TRPC-mediated cellular Ca2+ responses were largely preserved. The observed light-induced membrane effects of the released caging moiety may well interfere with certain cellular functions, and prompt caution in using coumarin-caged second messengers in cellular studies.
Keywords:
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号