首页 | 本学科首页   官方微博 | 高级检索  
     


Catecholamine exocytosis is diminished in R6/2 Huntington's disease model mice
Authors:Johnson Michael A  Villanueva Melissa  Haynes Christy L  Seipel Andrew T  Buhler Leah A  Wightman R Mark
Affiliation:Department of Chemistry The University of North Carolina, Chapel Hill, North Carolina, USA;
Neuroscience Center, The University of North Carolina, Chapel Hill, North Carolina, USA
Abstract:In this work, the mechanisms responsible for dopamine (DA) release impairments observed previously in Huntington's disease model R6/2 mice were evaluated. Voltammetrically measured DA release evoked in striatal brain slices from 12-week old R6/2 mice by a single electrical stimulus pulse was only 19% of wild-type (WT) control mice. Iontophoresis experiments suggest that the concentration of released DA is not diluted by a larger striatal extracellular volume arising from brain atrophy, but, rather, that striatal dopaminergic terminals have a decreased capacity for DA release. This decreased capacity was not due to an altered requirement for extracellular Ca2+, and, as in WT mice, the release in R6/2 mice required functioning vesicular transporters. Catecholamine secretion from individual vesicles was measured during exocytosis from adrenal chromaffin cells harvested from R6/2 and WT mice. While the number of exocytotic events was unchanged, the amounts released per vesicle were significantly diminished in R6/2 mice, indicating that vesicular catecholamines are present in decreased amounts. Treatment of chromaffin cells with 3-nitropropionic acid decreased the vesicular release amount from WT cells by 50%, mimicking the release observed from untreated R6/2 cells. Thus, catecholamine release from tissues isolated from R6/2 mice is diminished because of impaired vesicle loading.
Keywords:adrenal chromaffin cells    catecholamine    caudate putamen    cyclic voltammetry    dopamine    Huntington's disease
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号