首页 | 本学科首页   官方微博 | 高级检索  
     


Characterizing ligand-gated ion channel receptors with genetically encoded Ca2++ sensors
Authors:Yamauchi John G  Nemecz Ákos  Nguyen Quoc Thang  Muller Arnaud  Schroeder Lee F  Talley Todd T  Lindstrom Jon  Kleinfeld David  Taylor Palmer
Affiliation:Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America.
Abstract:We present a cell based system and experimental approach to characterize agonist and antagonist selectivity for ligand-gated ion channels (LGIC) by developing sensor cells stably expressing a Ca(2+) permeable LGIC and a genetically encoded F?rster (or fluorescence) resonance energy transfer (FRET)-based calcium sensor. In particular, we describe separate lines with human α7 and human α4β2 nicotinic acetylcholine receptors, mouse 5-HT(3A) serotonin receptors and a chimera of human α7/mouse 5-HT(3A) receptors. Complete concentration-response curves for agonists and Schild plots of antagonists were generated from these sensors and the results validate known pharmacology of the receptors tested. Concentration-response relations can be generated from either the initial rate or maximal amplitudes of FRET-signal. Although assaying at a medium throughput level, this pharmacological fluorescence detection technique employs a clonal line for stability and has versatility for screening laboratory generated congeners as agonists or antagonists on multiple subtypes of ligand-gated ion channels. The clonal sensor lines are also compatible with in vivo usage to measure indirectly receptor activation by endogenous neurotransmitters.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号