首页 | 本学科首页   官方微博 | 高级检索  
     


High throughput two-dimensional blue-native electrophoresis: a tool for functional proteomics of mitochondria and signaling complexes
Authors:Brookes Paul S  Pinner Anita  Ramachandran Anup  Coward Lori  Barnes Stephen  Kim Helen  Darley-Usmar Victor M
Affiliation:Department of Pathology, University of Alabama at Birmingham, Biomedical Research Building 2, 901 19th Street South, Birmingham, AL 35294, USA. brookes@uab.edu
Abstract:The recent upsurge in proteomics research has been facilitated largely by streamlining of two-dimensional (2-D) gel technology and the parallel development of facile mass spectrometry for analysis of peptides and proteins. However, application of these technologies to the mitochondrial proteome has been limited due to the considerable complement of hydrophobic membrane proteins in mitochondria, which precipitate during first dimension isoelectric focusing of standard 2-D gels. In addition, functional information regarding protein:protein interactions is lost during 2-D gel separation due to denaturing conditions in both gel dimensions. To resolve these issues, 2-D blue-native gel electrophoresis was applied to the mitochondrial proteome. In this technique, membrane protein complexes such as those of the respiratory chain are solubilized and resolved in native form in the first dimension. A second dimension sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel then denatures the complexes and resolves them into their component subunits. Refinements to this technique have yielded the levels of throughput and reproducibility required for proteomics. By coupling to tryptic peptide fingerprinting using matrix-assisted laser desorption/ionization-time of flight mass spectrometry, a partial mitochondrial proteome map has been assembled. Applications of this functional mitochondrial proteomics method are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号