首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Control of early anterior-posterior patterning in the mouse embryo by TGF-beta signalling
Authors:Robertson Elizabeth J  Norris Dominic P  Brennan Jane  Bikoff Elizabeth K
Institution:Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA. ejrobert@fas.harvard.edu
Abstract:Prior to gastrulation the mouse embryo exists as a symmetrical cylinder consisting of three tissue layers. Positioning of the future anterior-posterior axis of the embryo occurs through coordinated cell movements that rotate a pre-existing proximal-distal (P-D) axis. Overt axis formation becomes evident when a discrete population of proximal epiblast cells become induced to form mesoderm, initiating primitive streak formation and marking the posterior side of the embryo. Over the next 12-24 h the primitive streak gradually elongates along the posterior side of the epiblast to reach the distal tip. The most anterior streak cells comprise the 'organizer' region and include the precursors of the so-called 'axial mesendoderm', namely the anterior definitive endoderm and prechordal plate mesoderm, as well as those cells that give rise to the morphologically patent node. Signalling pathways controlled by the transforming growth factor-beta ligand nodal are involved in orchestrating the process of axis formation. Embryos lacking nodal activity arrest development before gastrulation, reflecting an essential role for nodal in establishing P-D polarity by generating and maintaining the molecular pattern within the epiblast, extraembryonic ectoderm and the visceral endoderm. Using a genetic strategy to manipulate temporal and spatial domains of nodal expression reveals that the nodal pathway is also instrumental in controlling both the morphogenetic movements required for orientation of the final axis and for specification of the axial mesendoderm progenitors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号