首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modifications of stability and function of lysozyme
Authors:Taiji Imoto  Hidenori Yamada  Kiyotaka Okazaki  Tadashi Ueda  Ryota Kuroki and Takanori Yasukochi
Institution:(1) Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan;(2) Tochigi Research Laboratories, Kao Corporation, Tochigi, Japan
Abstract:Approaches to improving the functionality of lysozyme are presented. Lysozyme was variously modified and the stabilities of the derivatives were determined by thermal denaturation experiments. Contributions of salt bridge(s), hydrophobic interactions(s), and cross-linkage(s) were evaluated. The stabilities against proteolysis were also considered. For the latter stability, it might be important to depress the rate of unfolding, i.e., to stabilize the native conformation. As a rule, salt bridges and hydrophobic interactions stabilize the native conformation and cross-linkages destabilize the denatured conformation. However, cross-linkages are apt to introduce strains in the native conformation and only suitable lengths of cross-linkages can stabilize the protein. The stabilization was shown to be generally effective in improving the functionality of proteins. Catalytic groups in lysozyme (Glu-35 and Asp-52) were variously modified and finally converted to the respective amides. The participation of these groups in the catalytic function was confirmed. The specificity of lysozyme was modified. Asp-101, which lies on the top of the active site cleft of lysozyme, was variously modified and the effects on the hydrolysis patterns of a hexamer of N-acetylglucosamine were analyzed. Some approaches to endowing lysozyme with altered functions are also presented. In order to give higher esterase activity to lysozyme, the complementarity of enzyme and substrate was investigated by modifying substrate and the active site cleft of lysozyme. An attempt was made to convert lysozyme into a transaminase by introducing pyridoxamine to the active site cleft of lysozyme. Finally, we have started to apply genetic engineering to this kind of investigation and would like to see how far we can go with protein engineering to improve the nature of proteins.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985.
Keywords:lysozyme  chemical modifications  stability of protein  modification of function  altered function
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号