首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The role of nucleoside triphosphate hydrolysis in transducing systems: p21ras and muscle.
Authors:M R Webb
Institution:National Institute for Medical Research, The Ridgeway, London, U.K.
Abstract:A variety of systems use nucleoside triphosphate hydrolysis to control or provide energy for biological processes, mediated through protein-protein interactions. The nature of this coupling may vary, but often there is a degree of similarity. In this paper, two systems are compared: actomyosin in muscle and p21ras in a signal transduction pathway as yet undefined. The mechanism of the nucleotide triphosphate hydrolysis and the consequent changes in the protein-nucleotide complex have been investigated, to understand how the coupling to biological function is achieved. The basal nucleoside triphosphatase mechanisms are compared and the roles of proteins that activate the hydrolysis, actin and GAP, are discussed. The cleavage process was probed by stereochemical techniques to determine the basic mechanism, of either a phosphorylated enzyme intermediate or direct displacement of nucleoside diphosphate by water. Phosphate-water oxygen exchange probes were used to investigate nucleoside triphosphate and inorganic phosphate release steps. A new method of probing the kinetics of inorganic phosphate release directly has been developed. In muscle, this process seems likely to be related directly to force generation. In the GAP-ras system, measurement of phosphate release is allowing the mechanism of the GAP-p21ras interaction to be probed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号