首页 | 本学科首页   官方微博 | 高级检索  
     


Spectroscopic characterization of the artificial Siderophore pyridinochelin
Authors:Kumke Michael U  Dosche Carsten  Flehr Roman  Trowitzsch-Kienast Wolfram  Löhmannsröben Hans-Gerd
Affiliation:Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany. Kumke@chem.uni-potsdam.de
Abstract:Siderophores play a very important role in the uptake process of iron by bacteria. Due to the so-called active transport the uptake of siderophores by bacteria is very specific, which makes the use of siderophores as effective shuttles for antibiotics in the treatment of infections and other diseases caused by bacteria highly attractive. In order to further investigate the transport and incorporation of siderophores into the bacteria cells, distinct molecular probes are needed. Especially artificial siderophores, that show a specific intrinsic fluorescence, are highly attractive for such monitoring purposes. A promising candidate of such a fluorescent artificial siderophore is bis-2,3-dihydroxybenzoyl-2,6-dimethylamino-pyridine (pyridinochelin, PY). The fluorescence properties of PY were investigated in different solvents and in the presence of different metal ions. It was found that PY in its free form shows a complex fluorescence behavior. In methanol a clear dual fluorescence is observed. In aqueous solution intermolecular interactions with water molecules are determining the intrinsic fluorescence. Upon complexation with metal ions (Me3+ = Eu3+, Tb3+, Al3+, Fe3+) the fluorescence characteristics changed. The fluorescence quantum yield of PY decreased upon addition of Me3+--except for Al3+, which showed no fluorescence quenching. The fluorescence decay of PY loaded with metal ions showed a nicely mono-exponential fluorescence decay, which was in contrast to PY in the absence of metal ions. This drastic change in the fluorescence properties of PY upon metal ion complexation makes PY highly attractive as a fluorescence probe for the investigation of siderophore action and siderophore-mediated transport processes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号