首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The mechanism of proton exclusion in the aquaporin-1 water channel
Authors:de Groot Bert L  Frigato Tomaso  Helms Volkhard  Grubmüller Helmut
Institution:Theoretical Molecular Biophysics Group, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 G?ttingen, Germany. bgroot@gwdg.de
Abstract:Aquaporins are efficient, yet strictly selective water channels. Remarkably, proton permeation is fully blocked, in contrast to most other water-filled pores which are known to conduct protons well. Blocking of protons by aquaporins is essential to maintain the electrochemical gradient across cellular and subcellular membranes. We studied the mechanism of proton exclusion in aquaporin-1 by multiple non-equilibrium molecular dynamics simulations that also allow proton transfer reactions. From the simulations, an effective free energy profile for the proton motion along the channel was determined with a maximum-likelihood approach. The results indicate that the main barrier is not, as had previously been speculated, caused by the interruption of the hydrogen-bonded water chain, but rather by an electrostatic field centered around the fingerprint Asn-Pro-Ala (NPA) motif. Hydrogen bond interruption only forms a secondary barrier located at the ar/R constriction region. The calculated main barrier height of 25-30 kJ mol(-1) matches the barrier height for the passage of protons across pure lipid bilayers and, therefore, suffices to prevent major leakage of protons through aquaporins. Conventional molecular dynamics simulations additionally showed that negatively charged hydroxide ions are prevented from being trapped within the NPA region by two adjacent electrostatic barriers of opposite polarity.
Keywords:Q-HOP  proton transfer  molecular dynamics simulation  proton gradient  membrane permeability
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号