首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Lipid peroxidation modification of protein generates Nepsilon-(4-oxononanoyl)lysine as a pro-inflammatory ligand
Authors:Shibata Takahiro  Shimozu Yuuki  Wakita Chika  Shibata Noriyuki  Kobayashi Makio  Machida Sachiko  Kato Rina  Itabe Hiroyuki  Zhu Xiaochun  Sayre Lawrence M  Uchida Koji
Institution:Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
Abstract:4-Oxo-2(E)-nonenal (ONE), a peroxidation product of ω-6 polyunsaturated fatty acids, covalently reacts with lysine residues to generate a 4-ketoamide-type ONE-lysine adduct, N(ε)-(4-oxononanoyl)lysine (ONL). Using an ONL-coupled protein as the immunogen, we raised the monoclonal antibody (mAb) 9K3 directed to the ONL and conclusively demonstrated that the ONL was produced during the oxidative modification of a low density lipoprotein (LDL) in vitro. In addition, we observed that the ONL was present in atherosclerotic lesions, in which an intense immunoreactivity was mainly localized in the vascular endothelial cells and macrophage- and vascular smooth muscle cell-derived foam cells. Using liquid chromatography with on-line electrospray ionization tandem mass spectrometry, we also established a highly sensitive method for quantification of the ONL and confirmed that the ONL was indeed formed during the lipid peroxidation-mediated modification of protein in vitro and in vivo. To evaluate the biological implications for ONL formation, we examined the recognition of ONL by the scavenger receptor lectin-like oxidized LDL receptor-1 (LOX-1). Using CHO cells stably expressing LOX-1, we evaluated the ability of ONL to compete with the acetylated LDL and found that both the ONE-modified and ONL-coupled proteins inhibited the binding and uptake of the modified LDL. In addition, we demonstrated that the ONL-coupled protein was incorporated into differentiated THP-1 cells via LOX-1. Finally, we examined the effect of ONL on the expression of the inflammation-associated gene in THP-1 and observed that the ONL-coupled proteins significantly induced the expression of atherogenesis-related genes, such as the monocyte chemoattractant protein-1 and tumor necrosis factor-α, in a LOX-1-dependent manner. Thus, ONL was identified to be a potential endogenous ligand for LOX-1.
Keywords:Atherosclerosis  Lipoprotein Metabolism  Low Density Lipoprotein (LDL)  Oxidative Stress  Receptors  Covalent Modification of Proteins  Lipid Peroxidation  Reactive Aldehydes  Scavenger Receptor
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号