首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cyclin D2 and Ha-Ras transformed rat embryo fibroblasts exhibit a novel deregulation of cell size control and early S phase arrest in low serum.
Authors:E Kerkhoff and  E B Ziff
Institution:Howard Hughes Medical Institute, New York University Medical Center, NY 10016, USA.
Abstract:The D-type cyclins are growth factor-regulated delayed early functions which peak at the G1/S transition, are thought to regulate entry into S phase and have been implicated in tumorigenesis. Here, we show that cyclin D2 can co-operate with Ha-Ras to impose a novel transformed state on rat embryo fibroblasts (REF). While clonal cyclin D2/Ha-Ras REF transformants exhibit a characteristic transformed phenotype in high serum, in low serum they arrest cell proliferation and display profound morphological and cytological changes indicating loss of control of cell mass and deregulation of the G1/S transition. Notably, in low serum, despite re-establishment of actin cables and arrest of proliferation, cell mass continues to increase, creating giant cells up to 10 x normal size. Also, during low-serum culture the cells make a very gradual but progressive entry into S phase, reaching a 2.4N DNA content after 6 days. PCNA is expressed and 2N and 4N cells are largely absent, and thus the cells undergo a novel S phase arrest. While transfer to low serum induced the retinoblastoma protein to enter its dephosphorylated state, and cyclin A, cyclin B and cdc2 levels to decrease, all as normal, cyclin E, cdk4, cdk2 and the exogenous cyclin D2 persisted at high levels. These results indicate that cyclin D2 and Ha-Ras can transform cells when mitogenic signals from growth factors are provided. However, in low serum, co-operation of cyclin D2 and Ha-Ras provides only a subset of the progression signals and these are sufficient for G1-related cell mass increase and S phase entry, but are insufficient for full cell cycling.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号