首页 | 本学科首页   官方微博 | 高级检索  
     

水稻多元有害生物为害特征及产量损失量化
引用本文:董坤,董艳,王海龙,陈斌,张立敏,昝庆安,李正跃. 水稻多元有害生物为害特征及产量损失量化[J]. 生态学报, 2014, 34(21): 6124-6136
作者姓名:董坤  董艳  王海龙  陈斌  张立敏  昝庆安  李正跃
作者单位:云南农业大学农业生物多样性与病虫害控制教育部重点实验室, 云南农业大学农业生物多样性国家工程中心, 云南农业大学植物保护学院, 昆明 650201;云南农业大学食品科技学院, 昆明 650201;云南农业大学资源与环境学院, 昆明 650201;黑龙江农业经济职业学院农学院, 牡丹江 157041;云南农业大学农业生物多样性与病虫害控制教育部重点实验室, 云南农业大学农业生物多样性国家工程中心, 云南农业大学植物保护学院, 昆明 650201;云南农业大学农业生物多样性与病虫害控制教育部重点实验室, 云南农业大学农业生物多样性国家工程中心, 云南农业大学植物保护学院, 昆明 650201;云南农业大学基础与信息学院, 昆明 650201;云南农业大学农业生物多样性与病虫害控制教育部重点实验室, 云南农业大学农业生物多样性国家工程中心, 云南农业大学植物保护学院, 昆明 650201;云南农业大学农业生物多样性与病虫害控制教育部重点实验室, 云南农业大学农业生物多样性国家工程中心, 云南农业大学植物保护学院, 昆明 650201
基金项目:云南省自然科学基金(2011FB051); 云南省教育厅重点基金(2011Z037, 2011Y449); 国家自然科学基金(31060277, 31160363); 国家重大基础研究计划(973)项目(2011CB100404)
摘    要:收集了云南粳稻主产区沾益、寻甸两县106块稻田水稻有害生物为害和产量等信息,并用两种方法对其分析。第一种方法应用聚类分析和对应分析描述水稻有害生物为害类型和产量水平之间的关系,第二种方法应用主成分分析和多元逐步回归估计各为害的产量损失。聚类分析确定了7种有害生物为害类型,其中IN1、IN2和IN3为害水平较低,而IN5、IN6和IN7为害水平较高。有害生物为害类型和水稻产量水平之间的对应分析,在前两个轴构成的因子空间内绘出了各为害类型和产量水平的位置,并给出了一条与为害类型紧密联系的产量水平增加路线。该分析暗示与位于该因子平面右边的有害生物为害类型(IN1、IN2和IN3)相比,位于左边的为害类型(IN5、IN6和IN7)将引起水稻更大的产量损失。主成分多元回归分析评估了水稻各种病、虫、草害所造成的减产量及其相对重要性。分析结果表明,高于水稻冠层杂草、蛀茎害虫(白穗)、稻纵卷叶螟、白叶枯病、粘虫、叶瘟病和稻飞虱是该稻作区对水稻产量影响较大的为害因子。

关 键 词:多元有害生物系统  为害类型  产量损失估计  对应分析  多元回归分析
收稿时间:2013-01-28
修稿时间:2014-09-03

A characterization of rice multiple-pest injuries and quantification of yield losses
DONG Kun,DONG Yan,WANG Hailong,CHEN Bin,ZHANG Limin,ZAN Qingan and LI Zhengyue. A characterization of rice multiple-pest injuries and quantification of yield losses[J]. Acta Ecologica Sinica, 2014, 34(21): 6124-6136
Authors:DONG Kun  DONG Yan  WANG Hailong  CHEN Bin  ZHANG Limin  ZAN Qingan  LI Zhengyue
Affiliation:Key Laboratory of Agricultural Biodiversity for Pest Management, Ministry of Education, The National Center for Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China;College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China;College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China;College of Agriculture, Heilongjiang Agricultural Economy Vocational College, Mudanjiang 157041, China;Key Laboratory of Agricultural Biodiversity for Pest Management, Ministry of Education, The National Center for Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China;Key Laboratory of Agricultural Biodiversity for Pest Management, Ministry of Education, The National Center for Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China;College of Basic Science and Information Engineering, Yunnan Agricultural University, Kunming 650201, China;Key Laboratory of Agricultural Biodiversity for Pest Management, Ministry of Education, The National Center for Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China;Key Laboratory of Agricultural Biodiversity for Pest Management, Ministry of Education, The National Center for Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
Abstract:A total of 106 individual farmers'' fields were surveyed in Zhanyi and Xundian counties (the main japonica-rice-producing areas of the Yunnan plateau) of Yunnan province. The data pertaining to pest injuries and yields was collected and analyzed using two analytical approaches. The first approach was intended to characterize relationships between injury profiles and yield levels using cluster and correspondence analyses, while the second approach was aimed at generating yield loss estimates using combinations of principal components and step-wise multiple regressions. Seven pest injury profiles (abbreviated as IN) were determined using cluster analysis; IN1, IN2, and IN3 were lower injury levels of pest combinations in seven profiles, while IN5, IN6, and IN7 were higher injury levels. Clusters of injury profiles (IN1-IN7) and yield levels (Y1-Y5) are plotted on the two first axes of correspondence analysis between patterns of injury profiles (IN) and yield levels (Y). The correspondence analysis yielded a path of increasing yield levels (Y1 to Y5) associated with varying combinations of injuries in the plane defined by axes 1 and 2. This would suggest that injury profiles (IN5, IN6 and IN7) located on the left in the factorial plane may cause more considerable damage than others (IN1, IN2 and IN3) located on the right. The principal component analysis with multiple regressions generated estimates of yield reductions due to rice diseases, insects and weeds. The results showed that injuries caused by weeds above rice canopy, stem borers (white heads), leaf folder, bacterial leaf blight, army worms, leaf blast and plant hoppers were the most damaging factors in this region. Results of this study will provide some foundations for developing pest management strategies and improving rice production level at the regional scale.
Keywords:multiple pest system  injury profiles  yield loss assessment  correspondence analysis  multiple regression analysis
本文献已被 CNKI 等数据库收录!
点击此处可从《生态学报》浏览原始摘要信息
点击此处可从《生态学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号