首页 | 本学科首页   官方微博 | 高级检索  
   检索      


11C]flumazenil binding is increased in a dose-dependent manner with tiagabine-induced elevations in GABA levels
Authors:Frankle W Gordon  Cho Raymond Y  Mason N Scott  Chen Chi-Min  Himes Michael  Walker Christopher  Lewis David A  Mathis Chester A  Narendran Rajesh
Institution:Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America. franklewg@upmc.edu
Abstract:Evidence indicates that synchronization of cortical activity at gamma-band frequencies, mediated through GABA-A receptors, is important for perceptual/cognitive processes. To study GABA signaling in vivo, we recently used a novel positron emission tomography (PET) paradigm measuring the change in binding of the benzodiazepine (BDZ) site radiotracer (11)C]flumazenil associated with increases in extracellular GABA induced via GABA membrane transporter (GAT1) blockade with tiagabine. GAT1 blockade resulted in significant increases in (11)C]flumazenil binding potential (BPND) over baseline in the major functional domains of the cortex, consistent with preclinical studies showing that increased GABA levels enhance the affinity of GABA-A receptors for BDZ ligands. In the current study we sought to replicate our previous results and to further validate this approach by demonstrating that the magnitude of increase in (11)C]flumazenil binding observed with PET is directly correlated with tiagabine dose. (11)C]flumazenil distribution volume (VT) was measured in 18 healthy volunteers before and after GAT1 blockade with tiagabine. Two dose groups were studied (n = 9 per group; Group I: tiagabine 0.15 mg/kg; Group II: tiagabine 0.25 mg/kg). GAT1 blockade resulted in increases in mean (± SD) (11)C]flumazenil VT in Group II in association cortices (6.8 ± 0.8 mL g-1 vs. 7.3 ± 0.4 mL g-1;p = 0.03), sensory cortices (6.7 ± 0.8 mL g-1 vs. 7.3 ± 0.5 mL g-1;p = 0.02) and limbic regions (5.2 ± 0.6 mL g-1 vs. 5.7 ± 0.3 mL g-1;p = 0.03). No change was observed at the low dose (Group I). Increased orbital frontal cortex binding of (11)C]flumazenil in Group II correlated with the ability to entrain cortical networks (r = 0.67, p = 0.05) measured via EEG during a cognitive control task. These data provide a replication of our previous study demonstrating the ability to measure in vivo, with PET, acute shifts in extracellular GABA.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号