首页 | 本学科首页   官方微博 | 高级检索  
     


Dimerization is necessary for MIM-mediated membrane deformation and endocytosis
Authors:Cao Meng  Zhan Tailan  Ji Min  Zhan Xi
Affiliation:*School of Chemistry and Chemical Engineering, Southeast University, 87 Dingjia Bridge Road, Nanjing 210096, China.
Abstract:MIM [missing in metastasis; also called MTSS1 (metastasis suppressor 1)] is an intracellular protein that binds to actin and cortactin and has an intrinsic capacity to sense and facilitate the formation of protruded membranous curvatures implicated in cell-ular polarization, mobilization and endocytosis. The N-terminal 250 amino acids of MIM undergo homodimerization and form a structural module with the characteristic of an I-BAR [inverse BAR (Bin/amphiphysin/Rvs)] domain. To discern the role of the dimeric configuration in the function of MIM, we designed several peptides able to interfere with MIM dimerization in a manner dependent upon their lengths. Overexpression of one of the peptides effectively abolished MIM-mediated membrane protrusions and transferrin uptake. However, a peptide with a high potency inhibiting MIM dimerization failed to affect its binding to actin and cortactin. Thus the results of the present study indicate that the dimeric configuration is essential for MIM-mediated membrane remodelling and serves as a proper target to develop antagonists specifically against an I-BAR-domain-containing protein.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号