首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pulmonary control systems in exercise
Authors:J A Dempsey  E H Vidruk  S M Mastenbrook
Abstract:We reviewed the response and regulation of alveolar ventilation, chest wall mechanics, and alveolar-to-arterial gas exchange to the demands imposed by increases in tissue metabolic rate. The primary mediator of iso-capnic exercise hyperpnea remains a dilemma--with conflicting evidence presented on both sides of a "CO2 flow" humoral hypothesis versus a "neurogenic" non-humoral hypothesis. The increased expiratory flows and tidal volumes at any given level of hyperpnea are achieved at a "minimum" of increased mechanical work exerted on the lung and chest wall, owing to a control system that has multiple levels of nervous integration (from cortex to spinal motor neuron) readily accessible to a wide variety of sensory information concerning the mechanical status of the lung and respiratory muscles. The maintenance of arterial PO2 in the face of a falling CVO2 during exercise was attributed to a precise regulation over factors that limit diffusion equilibrium and intra- and interregional ventilation: perfusion distributions in the lung. Finally, we noted that the near-optimal nature of these responses and their control during exercise had many exceptions in the real world of physical exercise outside of the laboratory.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号