首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Predicting the molecular shape of polysaccharides from dynamic interactions with water
Authors:Almond Andrew  Sheehan John K
Institution:Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU United Kingdom. andrew.almond@bioch.ox.ac.uk
Abstract:How simple monosaccharides, once polymerized, become the basis for structural materials remains a mystery. A framework is developed to investigate the role of water in the emergence of dynamic structure in polysaccharides, using the important beta(1-->4) linkage as an example. This linkage is studied within decasaccharide fragments of cellulose, chitin, mannan, xylan, and hyaluronan, using molecular simulations in the presence of explicit water solvent. Although cellulose, mannan, chitin, and xylan are chemically similar, their intramolecular hydrogen-bond dynamics and interaction with water are predicted to differ. Cellulose, mannan, and chitin favor relatively static intramolecular hydrogen bonds, xylan prefers dynamic water bridges, and multiple water configurations are predicted at the beta(1-->4) linkages of hyaluronan. With such a variety of predicted dynamics, the hypothesis that the beta(1-->4) linkage is stabilized by intramolecular hydrogen bonds was rejected. Instead, it is proposed that favored molecular configurations are consistent with maximum rotamer and water degrees of freedom, explaining observations made previously by X-ray diffraction. Furthermore, polysaccharides predicted to be conformationally restricted in simulations (cellulose, chitin, and mannan) prefer the solid state in reality, even as oligosaccharides. Those predicted to be more flexible (xylan and hyaluronan) are known to be soluble, even as high polymers. Therefore an intriguing correlation between chemical composition, water organization, polymer properties, and biological function is proposed.
Keywords:cellulose      /  hyaluronan      /  polysaccharide      /  water      /  xylan
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号