首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Metabolic activation of 1-naphthol and phenol by a simple superoxide-generating system and human leukocytes
Authors:D A Eastmond  R C French  D Ross  M T Smith
Institution:Department of Biomedical and Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720.
Abstract:Phenol and 1-naphthol, products of benzene and naphthalene biotransformation, are metabolized during O2- generation by xanthine oxidase/hypoxanthine and phorbol myristate acetate (PMA)-stimulated human neutrophils. The addition of 1-naphthol to xanthine oxidase/hypoxanthine incubations resulted in the formation of 1,4-naphthoquinone (1,4-NQ) whereas phenol addition yielded only small quantities of hydroquinone, catechol and a unidentified reducible product but not 1,4-benzoquinone. This formation of 1,4-NQ was dependent upon hypoxanthine, xanthine oxidase, and 1-naphthol and was inhibited by the addition of superoxide dismutase (SOD) demonstrating that the conversion was O2-mediated. During O2- generation by PMA-stimulated neutrophils, the addition of phenol interfered with luminol-dependent chemiluminescence and resulted in covalent binding of phenol to protein. Protein binding was 80% inhibited by the addition of azide or catalase to the incubations indicating that bioactivation was peroxidase-mediated. In contrast, the addition of 1-naphthol to PMA-stimulated neutrophils interfered with superoxide-dependent cytochrome c reduction as well as luminol-dependent chemiluminescence and also resulted in protein binding. Protein binding was only partially inhibited by azide or catalase. The addition of SOD in combination with catalase resulted in a significantly greater inhibition of binding when compared to that of catalase alone. The results of these experiments indicate that phenol and 1-naphthol are converted to reactive metabolites during superoxide generating conditions but by different mechanisms. The formation of reactive metabolites from phenol was almost exclusively peroxidase-mediated whereas the bioactivation of 1-naphthol could occur by two different mechanisms, a peroxidase-dependent and a direct superoxide-dependent mechanism.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号