首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A pharmaceutical preparation of Salvia miltiorrhiza protects cardiac myocytes from tumor necrosis factor-induced apoptosis and reduces angiotensin II-stimulated collagen synthesis in fibroblasts
Authors:Shanhong Ling  Ruizhi Luo  Aozhi Dai  Zhixin Guo  Ruoling Guo  Paul A Komesaroff
Institution:1. Department of Medicine, Monash University Central and Eastern Clinical School, Alfred Hospital, Commercial Road, Prahran, Melbourne, Victoria 3181, Australia;2. Institute of Research and Development (R&D), Tasly Pharmaceutical Co., LTD, Tianjin 300402, China
Abstract:Salvia miltiorrhiza is a medicinal herb commonly used in traditional Chinese medicine for the prevention and treatment of cardiovascular disease. This study investigated the effects of Cardiotonic Pill (CP), a pharmaceutical preparation of Salvia miltiorrhiza, on cardiac myocytes and fibroblasts with respect to the viability, proliferation, and collagen synthesis in these cells under various conditions. A cardiac myocyte line, H9c2, and primarily cultured fibroblasts from rat hearts were incubated with CP over a broad concentration range (50–800 μg/ml) under normal cultures, conditions of ischemia (serum-free culture), and stimulation by angiotensin II (AII, 100 nM), hydrogen peroxide (H2O2, 50–200 μM), or tumor necrosis factor α (TNFα, 40 ng/ml) for 24–48 h. Cell growth, apoptosis, DNA and collagen synthesis, and expression of relevant genes were assessed via cell number study, morphological examination, Annexin-V staining, flow-cytometry, 3H]-thymidine or 3H]-proline incorporation assay, and Western blotting analysis. It was found that (1) at therapeutic (50 μg/ml) and double therapeutic (100 μg/ml) concentrations, CP did not significantly affect normal DNA synthesis and cell growth in these cardiac cells, while at higher (over 4-fold therapeutic) concentrations (200–800 μg/ml), CP decreased DNA synthesis and cell growth and increased cell death; (2) CP treatment (50 μg/ml) significantly inhibited TNFα-induced apoptosis in myocytes, with 12.3±1.46% cells being apoptosis in CP treatment group and 37.0±7.34% in the control (p<0.01), and simultaneously, expression of activated (phosphorylated) Akt protein was increased by about 2 folds in the CP-treated cells; and (3) in cultured fibroblasts, CP significantly reduced AII-induced collagen synthesis in a concentration-dependent manner (by ~50% and ~90% reduction of AII-induced collagen synthesis at 50 and 100 μg/ml, respectively). Thus, Salvia miltiorrhiza preparation CP is physiologically active on cardiac cells. The actions by CP to reduce apoptotic damage in myocytes and collagen synthesis in fibroblasts may help to preserve the heart function and reduce heart failure risk. The actions by CP to inhibit DNA synthesis and cell growth, which occurred at over therapeutic doses, may weaken the ability of heart repair. Further studies are needed to identify the chemical compounds in this herbal product that are responsible for these observed physiological effects.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号