首页 | 本学科首页   官方微博 | 高级检索  
     


COMP mutations: domain-dependent relationship between abnormal chondrocyte trafficking and clinical PSACH and MED phenotypes
Authors:Chen Tung-Ling L  Posey Karen L  Hecht Jacqueline T  Vertel Barbara M
Affiliation:Department of Cell Biology and Anatomy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA.
Abstract:Mutations in cartilage oligomeric matrix protein (COMP) produce clinical phenotypes ranging from the severe end of the spectrum, pseudoachondroplasia (PSACH), which is a dwarfing condition, to a mild condition, multiple epiphyseal dysplasia (MED). Patient chondrocytes have a unique morphology characterized by distended rER cisternae containing lamellar deposits of COMP and other extracellular matrix proteins. It has been difficult to determine why different mutations give rise to variable clinical phenotypes. Using our in vitro cell system, we previously demonstrated that the most common PSACH mutation, D469del, severely impedes trafficking of COMP and type IX collagen in chondrocytic cells, consistent with observations from patient cells. Here, we hypothesize that PSACH and MED mutations variably affect the cellular trafficking behavior of COMP and that the extent of defective trafficking correlates with clinical phenotype. Twelve different recombinant COMP mutations were expressed in rat chondrosarcoma cells and the percent cells with ER-retained COMP was assessed. For mutations in type 3 (T3) repeats, trafficking defects correlated with clinical phenotype; PSACH mutations had more cells retaining mutant COMP, while MED mutations had fewer. In contrast, the cellular trafficking pattern observed for mutations in the C-terminal globular domain (CTD) was not predictive of clinical phenotype. The results demonstrate that different COMP mutations in the T3 repeat domain have variable effects on intracellular transport, which correlate with clinical severity, while CTD mutations do not show such a correlation. These findings suggest that other unidentified factors contribute to the effect of the CTD mutations. J. Cell. Biochem. 103: 778-787, 2008. (c) 2007 Wiley-Liss, Inc.
Keywords:COMP  pseudoachondroplasia  (PSACH)  multiple epiphyseal dysplasia  (MED)  chondrocyte  endoplasmic reticulum
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号