首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Availability of phosphorus and sulfur of insecticide origin by fungi
Authors:SA Omar
Institution:Botany Department, Faculty of Science, Assiut University, Egypt.
Abstract:Thirteen fungal species isolated from soil treated with pesticides were tested for their ability to mineralize and degrade three organophosphate insecticides currently used in Egypt (Cyolan®, Malathion® and Dursban®) in liquid media free from phosporus (P) and sulfur (S). All fungal species grew successfully on the culture media treated with the three used doses of insecticides (10, 50 and 100 ppm active ingredient) but the growth rate varied with the species, the insecticide and the doses. At 10 ppm level, insecticide degradation expressed in term of organic P mineralization (calculated as % of applied P) was the highest with all fungi tested. Organic P mineralization from pesticides was decreased by increasing the dose used to 50 and 100 ppm. The highest amount of P mineralized was observed with Cyolan® followed by Malathion® whilst P mineralization from Dursban® proceeded very slowly. Aspergillus terreus showed the greatest potential to mineralize organic P followed by A. tamarii, A. niger, Trichoderma harzianum and Penicillium brevicompactum whilst the remaining fungi only moderately mineralized the organic P component of the insecticides tested. Organic sulfur mineralization by the used fungal species paralleled, to some extent, organic P mineralization. The extracellular protein content of culture filtrates in the presence of various doses of insecticides was also decreased by increasing insecticide concentrations. The extracellular protein was significantly correlated with P and S mineralization (r = 0.89** and 0.64**, respectively) whilst correlation with cell dry mass was not significant (r = 0.03 and 0.003) suggesting a direct relationship between pesticide degradation and microbial protein production. The addition of P or S to the growth media enhanced extracellular protein excretion, and increased organic P and S mineralization by the most potent species tested (A. niger, A. tamarii, A. terreus and T. harzianum). This increment was significant in most cases, especially at the higher application rates. The relationship between extracellular protein excretion and organic P and S mineralization from insecticides was highly significant with the addition of inorganic phosphorus (r = 0.96** and 0.83**, respectively) or sulfur (r = 0.85** and 0.89**, respectively) to the growth media.
Keywords:fungi  organophosphate insecticides  phosphorus mineralization  sulfur mineralization  soil
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号