首页 | 本学科首页   官方微博 | 高级检索  
     


Covalent inhibition of histone deacetylase 8 by 3,4-dihydro-2H-pyrimido[1,2-c][1,3]benzothiazin-6-imine
Authors:Marius Muth  Niklas Jänsch  Aleksandra Kopranovic  Andreas Krämer  Nathalie Wössner  Manfred Jung  Frank Kirschhöfer  Gerald Brenner-Weiß  Franz-Josef Meyer-Almes
Affiliation:1. Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Germany;2. Institute of Pharmaceutical Chemistry, University Frankfurt, Germany;3. Bioengineering and Biosystems, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Germany;4. Institute of Pharmaceutical Sciences, University of Freiburg, Germany
Abstract:

Background

HDAC8 is an established target for T-cell lymphoma and childhood neuroblastoma. Benzothiazine-imines are promising HDAC8 inhibitors with unknown binding mechanism lacking a usual zinc binding group.

Methods

In this study high-resolution and quantitative HPLC-coupled ESI-MS/MS techniques are combined with crystal structure determination and a variety of biochemical and computational methods to elucidate the reaction mechanism between benzothiazine-imine 1 and HDAC8.

Results

1) 1 is a covalent inhibitor of HDAC8; 2) inhibition is reversible in the presence of reducing agents; 3) C153 in the active site and C102 are involved in the inhibition mechanism; 4) 1 modifies various cysteines in HDAC8 forming either thiocyanates or mixed disulfides with 3; 5) 1 and 5 dock in close proximity to C153 within the active site. This is supposed to accelerate covalent inactivation particularly in HDAC8 and suggested as major determinant for the observed nanomolar potency and selectivity of 1.

Conclusions

1 and its analogs are interesting model compounds but unsuitable for therapeutic treatment due to their high unselective reactivity towards thiol groups. However, the postulated preceding non-covalent binding mode of 1 opens a door to optimized next generation compounds that combine potent and selective non-covalent recognition with low reactivity towards C153 at the active site of HDAC8.

General significance

1 represents a completely new class of inhibitors for HDAC8. Initial non-covalent interaction at the bottom of the active site is suggested to be the key for its selectivity. Further optimization of non-covalent interaction and thiol-reactivity provides opportunities to develop therapeutic useful covalent HDAC8 inhibitors.
Keywords:HDAC8  Selective inhibition  Binding mechanism  Non-hydroxamate inhibitor  Covalent inhibitor  Enzyme inhibition
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号