首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Association between frontal cortex oxidative damage and beta-amyloid as a function of age in Down syndrome
Authors:Giovanna CeniniAmy LS Dowling  Tina L BeckettEugenio Barone  Cesare MancusoMichael Paul Murphy  Harry LeVine IIIIra T Lott  Frederick A SchmittD Allan Butterfield  Elizabeth Head
Institution:
  • a Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0055, USA
  • b Department of Molecular and Biomedical Pharmacology, and Sanders-Brown Center on Aging University of Kentucky, Lexington, KY 40536, USA
  • c Department of Molecular and Cellular Biochemistry, and Sanders-Brown Center on Aging University of Kentucky, Lexington, KY 40536, USA
  • d Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito, 1, 00168 Roma, Italy
  • e Department of Neurology, MIND, University of California at Irvine, Irvine, CA 92697-4540, USA
  • f Department of Pediatrics, MIND, University of California at Irvine, Irvine, CA 92697-4540, USA
  • g Department of Neurology and Sanders-Brown Center on Aging University of Kentucky, Lexington, KY 40536, USA
  • Abstract:Down syndrome (DS) is the most common genetic cause of intellectual disability in children, and the number of adults with DS reaching old age is increasing. By the age of 40 years, virtually all people with DS have sufficient neuropathology for a postmortem diagnosis of Alzheimer disease (AD). Trisomy 21 in DS leads to an overexpression of many proteins, of which at least two are involved in oxidative stress and AD: superoxide dismutase 1 (SOD1) and amyloid precursor protein (APP). In this study, we tested the hypothesis that DS brains with neuropathological hallmarks of AD have more oxidative and nitrosative stress than those with DS but without significant AD pathology, as compared with similarly aged-matched non-DS controls. The frontal cortex was examined in 70 autopsy cases (n = 29 control and n = 41 DS). By ELISA, we quantified soluble and insoluble Aβ40 and Aβ42, as well as oligomers. Oxidative and nitrosative stress levels (protein carbonyls, 4-hydroxy-2-trans-nonenal (HNE)-bound proteins, and 3-nitrotyrosine) were measured by slot-blot. We found that soluble and insoluble amyloid beta peptide (Aβ) and oligomers increase as a function of age in DS frontal cortex. Of the oxidative stress markers, HNE-bound proteins were increased overall in DS. Protein carbonyls were correlated with Aβ40 levels. These results suggest that oxidative damage, but not nitrosative stress, may contribute to the onset and progression of AD pathogenesis in DS. Conceivably, treatment with antioxidants may provide a point of intervention to slow pathological alterations in DS.
    Keywords:Alzheimer disease  4-Hydroxy-2-nonenal  3-Nitrotyrosine  Oligomer  Protein carbonyl  Trisomy 21
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号