首页 | 本学科首页   官方微博 | 高级检索  
     


Importance of leaf versus whole plant CO2 environment for photosynthetic acclimation
Authors:D. A. Sims,Y. Luo,&   J. R. Seemann
Affiliation:Desert Research Institute, Reno, and,;University of Nevada, Reno, Nevada, USA
Abstract:The reduction of photosynthetic capacity in many plants grown at elevated CO2 is thought to result from a feedback effect of leaf carbohydrates on gene expression. Carbohydrate feedback at elevated CO2 could result from limitations on carbohydrate utilization at many different points, for example export of triose phosphates from the chloroplast, sucrose synthesis and phloem loading, transport in the phloem, unloading of the phloem at the sinks, or utilization for growth of sinks. To determine the relative importance of leaf versus whole plant level limitations on carbohydrate utilization at elevated CO2, and the possible effects on the regulation of photosynthetic capacity, we constructed a treatment system in which we could expose single, attached, soybean leaflets to CO2 concentrations different from those experienced by the rest of the plant. The single leaflet treatments had dramatic effects on the carbohydrate contents of the treated leaflets. However, photosynthetic capacity and rubisco content were unaffected by the individual leaflet treatment and instead were related to the whole plant CO2 environment, despite the fact that the CO2 environment around the rest of the plant had no significant affect on the total non-structural carbohydrate (TNC) contents of the treated leaflets. These results necessitate a re-evaluation of the response mechanisms to CO2 as well as some of the methods used to test these responses. We propose mechanisms by which sink strength could influence leaf physiology independently of changes in carbohydrate accumulation.
Keywords:Glycine max    Fabaceae    acclimation    carbohydrates    carbon dioxide    photosynthesis    rubisco    soybean
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号