首页 | 本学科首页   官方微博 | 高级检索  
     


A decade of progress in understanding vitamin E synthesis in plants
Authors:DellaPenna Dean
Affiliation:Department of Biochemistry and Molecular Biology, Biochemistry Building room 215, Michigan State University, East Lansing, MI 48824-1319, USA. dellapen@msu.edu
Abstract:The chloroplasts of higher plants contain and elaborate many unique biochemical pathways that produce an astonishing array of compounds that are vital for plastid function and are also important from agricultural and nutritional perspectives. One such group of compounds is the tocochromanols (more commonly known as Vitamin E), which is a class of four tocopherols and four toctorienols, lipid-soluble antioxidants that are only synthesized by plants and other oxygenic, photosynthetic organisms. Though the essential nature of tocopherols in mammalian diets was recognized over 80 years ago and the biosynthetic pathway in plants and algae elucidated in the late 1970s and early 80s, it has only been in the past decade that the genes and proteins for tocopherol synthesis have finally been isolated and characterized. The use of model plant and cyanobacterial systems has driven this gene discovery to the point that manipulation of tocopherol levels and types in various plant tissues and crops is becoming a reality. This article reviews progress since 1996 in the molecular and genetic understanding of tocopherol synthesis in the model photosynthetic organisms Arabidopsis thaliana and Synechocystis PCC6803 as a primer for current and future efforts to manipulate the levels of this essential nutrient in food crops by breeding and transgenic approaches.
Keywords:Arabidopsis   Engineering   Metabolism   Tocopherols
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号