首页 | 本学科首页   官方微博 | 高级检索  
     


Bacteria May Cope Differently from Similar Membrane Damage Caused by the Australian Tree Frog Antimicrobial Peptide Maculatin 1.1
Authors:Marc-Antoine Sani  Sónia Troeira Henriques  Daniel Weber  Frances Separovic
Affiliation:From the School of Chemistry, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia and ;the §Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
Abstract:Maculatin 1.1 (Mac1) is an antimicrobial peptide from the skin of Australian tree frogs and is known to possess selectivity toward Gram-positive bacteria. Although Mac1 has membrane disrupting activity, it is not known how Mac1 selectively targets Gram-positive over Gram-negative bacteria. The interaction of Mac1 with Escherichia coli, Staphylococcus aureus, and human red blood cells (hRBC) and with their mimetic model membranes is here reported. The peptide showed a 16-fold greater growth inhibition activity against S. aureus (4 μm) than against E. coli (64 μm) and an intermediate cytotoxicity against hRBC (30 μm). Surprisingly, Sytox Green uptake monitored by flow cytometry showed that Mac1 compromised both bacterial membranes with similar efficiency at ∼20-fold lower concentration than the reported minimum inhibition concentration against S. aureus. Mac1 also reduced the negative potential of S. aureus and E. coli membrane with similar efficacy. Furthermore, liposomes mimicking the cell membrane of S. aureus (POPG/TOCL) and E. coli (POPE/POPG) were lysed at similar concentrations, whereas hRBC-like vesicles (POPC/SM/Chol) remained mostly intact in the presence of Mac1. Remarkably, when POPG/TOCL and POPE/POPG liposomes were co-incubated, Mac1 did not induce leakage from POPE/POPG liposomes, suggesting a preference toward POPG/TOCL membranes that was supported by surface plasma resonance assays. Interestingly, circular dichroism spectroscopy showed a similar helical conformation in the presence of the anionic liposomes but not the hRBC mimics. Overall, the study showed that Mac1 disrupts bacterial membranes in a similar fashion before cell death events and would preferentially target S. aureus over E. coli or hRBC membranes.
Keywords:antibiotic resistance   antimicrobial peptide (AMP)   bacteria   membrane biophysics   spectroscopy   competitive lipid environment
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号