首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evolutionary transitions in the Asteraceae coincide with marked shifts in transposable element abundance
Authors:S Evan Staton  John M Burke
Institution:.Department of Genetics, University of Georgia, Athens, GA 30602 USA ;.Current address: Beaty Biodiversity Research Centre and Department of Botany, 3529–6270 University Blvd, University of British Columbia, Vancouver, BC V6T 1Z4 Canada ;.Department of Plant Biology, University of Georgia, Athens, GA 30602 USA
Abstract:

Background

The transposable element (TE) content of the genomes of plant species varies from near zero in the genome of Utricularia gibba to more than 80 % in many species. It is not well understood whether this variation in genome composition results from common mechanisms or stochastic variation. The major obstacles to investigating mechanisms of TE evolution have been a lack of comparative genomic data sets and efficient computational methods for measuring differences in TE composition between species. In this study, we describe patterns of TE evolution in 14 species in the flowering plant family Asteraceae and 1 outgroup species in the Calyceraceae to investigate phylogenetic patterns of TE dynamics in this important group of plants.

Results

Our findings indicate that TE families in the Asteraceae exhibit distinct patterns of non-neutral evolution, and that there has been a directional increase in copy number of Gypsy retrotransposons since the origin of the Asteraceae. Specifically, there is marked increase in Gypsy abundance at the origin of the Asteraceae and at the base of the tribe Heliantheae. This latter shift in genome composition has had a significant impact on the diversity and abundance distribution of TEs in a lineage-specific manner.

Conclusions

We show that the TE-driven expansion of plant genomes can be facilitated by just a few TE families, and is likely accompanied by the modification and/or replacement of the TE community. Importantly, large shifts in TE composition may be correlated with major of phylogenetic transitions.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1830-8) contains supplementary material, which is available to authorized users.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号