首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Two tandemly linked identical genes code for the glycosomal glyceraldehyde-phosphate dehydrogenase in Trypanosoma brucei.
Authors:P A Michels  A Poliszczak  K A Osinga  O Misset  J Van Beeumen  R K Wierenga  P Borst  and F R Opperdoes
Abstract:Trypanosoma brucei contains two isoenzymes for glyceraldehyde-phosphate dehydrogenase (GAPDH); one enzyme resides in a microbody-like organelle, the glycosome, the other one is found in the cytosol. We show here that the glycosomal enzyme is encoded by two tandemly linked genes of identical sequence. These genes code for a protein of 358 amino acids, with a mol. wt of 38.9 kd. This is considerably larger than all other GAPDH proteins studied so far, including the enzyme that is located in the cytosol of the trypanosome. The glycosomal enzyme shows 52-57% homology with known sequences of GAPDH proteins from 10 other organisms, both prokaryotes and eukaryotes. The residues that are involved in NAD+ binding, catalysis and subunit contacts are well conserved between all these GAPDH molecules, including the trypanosomal one. However, the glycosomal protein of T. brucei has some distinct features. Firstly, it contains a number of insertions, 1-8 amino acids long, which are responsible for the high mol. wt of the protein. Secondly, an unusually high number of positively charged amino acids confer a high isoelectric point (pI 9.3) to the protein. Part of the additional basic residues are present in the insertions. We discuss the genomic organization of the genes for the glycosomal GAPDH and the possibility that the particular features of the protein are involved in its transfer from the cytoplasm, where it is synthesized, into the glycosome.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号