首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Control of O-glycan synthesis: specificity and inhibition of O-glycan core 1 UDP-galactose:N-acetylgalactosamine-alpha-R beta 3-galactosyltransferase from rat liver.
Authors:I Brockhausen  G M?ller  A Pollex-Krüger  V Rutz  H Paulsen  K L Matta
Institution:Research Institute, Hospital for Sick Children, Toronto, Ont., Canada.
Abstract:The specificity of glycosyltransferases is a major control factor in the biosynthesis of O-glycans. The enzyme that synthesizes O-glycan core 1, i.e., UDP-galactose:N-acetylgalactosamine-alpha-R beta 3-galactosyltransferase (beta 3-Gal-T; EC 2.4.1.122), was partially purified from rat liver. The enzyme preparation, free of pyrophosphatases, beta 4-galactosyltransferase, beta-galactosidase, and N-acetylglucosaminyltransferase I, was used to study the specificity and inhibition of the beta 3-Gal-T. beta 3-Gal-T activity is sensitive to changes in the R-group of the GalNAc alpha-R acceptor substrate and is stimulated when the R-group is a peptide or an aromatic group. Derivatives of GalNAc alpha-benzyl were synthesized and tested as potential substrates and inhibitors. Removal or substitution of the 3-hydroxyl or removal of the 4-hydroxyl of GalNAc abolished beta 3-Gal-T activity. Compounds with modifications of the 3- or 4-hydroxyl of GalNAc alpha-benzyl did not show significant inhibition. Removal or substitution of the 6-hydroxyl of GalNAc reduced activity slightly and these derivatives acted as competitive substrates. derivatives with epoxide groups attached to the 6-position of GalNAc acted as substrates and not as inhibitors, with the exception of the photosensitive 6-O-(4,4-azo)pentyl-GalNAc alpha-benzyl, which inhibited Gal incorporation into GalNAc alpha-benzyl. The results indicate that the enzyme does not require the 6-hydroxyl of GalNAc, but needs the 3- and the axial 4-hydroxyl as essential requirements for binding and activity. In the usual biochemical O-glycan pathway, core 2 (GlcNAc beta 6Gal beta 3] GalNAc alpha-) is formed from core 1 (Gal beta 3GalNAc-R). We have now demonstrated an alternate pathway that may be of importance in human tissues.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号