首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modulation of the tight binding of carboxyarabinitol 1,5-bisphosphate to the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase
Authors:A V Smrcka  H J Bohnert  R G Jensen
Institution:Department of Biochemistry, University of Arizona, Tucson 85721.
Abstract:The large subunit (L) of ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) from Synechococcus PCC 6301 was expressed in Escherichia coli, purified as the octamer L8, and analyzed for its ability to tightly bind the transition state analog, 2-carboxyarabinitol 1,5-bisphosphate (CABP). 14C]CABP remained tightly bound to L8 after challenging with 12C]CABP and gel filtration, indicating that L8 alone without the small subunit (S) could tightly bind CABP. Binding of CABP to L8 induced a shift in the gel filtration profile due to apparent aggregation of L8. Aggregation did not occur with the L8S8-CABP complex nor with L8-CABP in the presence of 150 mM MgCl2. If ionic strength was increased with either KCl or MgCl2 during or after the binding of 14C]CABP to L8, 14C]CABP in the complex exchanged with 12C]CABP and was lost from the protein. Ionic strength strongly affected the rate constant (k4) for 14C]CABP dissociation from the L8-14C]CABP complex, but had little effect on k4 for the L8S8-CABP complex. The differences in CABP binding characteristics between the L8-CABP and L8S8-CABP complexes demonstrate that S is intimately involved in maintaining the stability of the tight binding of CABP to the active site. These are the same interactions stabilizing the intermediate, 3-keto-2-carboxyarabinitol 1,5-bisphosphate, to native rubisco during CO2 fixation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号