首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Solubility and posttranslational regulation of GP130/F11--a neuronal GPI-linked cell adhesion molecule enriched in the neuronal membrane skeleton.
Authors:D J Moss  C A White
Institution:Department of Human Anatomy and Cell Biology, Liverpool, United Kingdom.
Abstract:GP130 (renamed contactin) has previously been identified by its detergent insolubility and retention with the actin-containing "membrane skeleton" isolated from chicken neurons and brain. The contactin sequence predicted a transmembrane and cytoplasmic domain for the molecule. Recently, F11 was shown to have an identical sequence except for the C terminus, and it was predicted to be linked to the plasma membrane by a glycosylphosphatidylinositol (GPI) group. Here we describe that GP130 can be released both from brain membranes and the detergent-insoluble membrane skeleton by a phosphoinositol-specific phospholipase C (PI-PLC) indicating that F11 and GP130/contactin are probably identical and that surprisingly the lipid anchor is partly or totally responsible for its non-ionic detergent insolubility. The "membrane skeleton" is a rich source of GPI-linked glycoproteins as judged by 1) most glycoproteins can be released by a PI-PLC and 2) most 3H]ethanolamine-labeled glycoproteins are present in, or enriched in the membrane skeleton. Thus, detergent insolubility appears to be a characteristic of GPI-anchored glycoproteins. No evidence has been obtained that GP130/F11 is released or secreted in vivo or in culture. In addition, GP130/F11 has an unusually long half-life in culture of greater than 3 days. The structure of the neuronal membrane skeleton and the potential function of GPI-anchored glycoproteins is discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号