High affinity binding of Bcl-xL to cytochrome c: possible relevance for interception of translocated cytochrome c in apoptosis |
| |
Authors: | Yadaiah M Rao P Nageswara Harish P Bhuyan Abani K |
| |
Affiliation: | Schools of Chemistry, University of Hyderabad, Hyderabad 500046, India. |
| |
Abstract: | The release of cytochrome c from mitochondria and apoptosis relies on several preferential and selective interactions involving the Bcl-2 family of proteins. There is, however, no direct evidence for the interaction of cytochrome c with these proteins at any stage of apoptosis. To investigate if any pro-survival protein from the Bcl-2 family could intercept cytochrome c after its translocation from mitochondria, the interaction of cytochrome c with bacterially expressed human Bcl-x(L) was studied at pH 7. In size-exclusion chromatography, purified full-length His(6)-tagged Bcl-x(L) migrated as both dimer and monomer, of which the monomeric fractions were used for experiments. Coimmunoprecipitation studies show that cytochrome c interacts with Bcl-x(L). The extent of caspase activity in cell lysate elicited by externally added cytochrome c is reduced when a preincubated mixture of Bcl-x(L) and cytochrome c is used instead. Equilibrium binding monitored by optical absorption of cytochrome c as a function of titrating concentrations of Bcl-x(L) yields the association constant, K(ass) = 8.4(+/- 4) x 10(6) M(-1) (binding affinity, K(diss) = 1/K(ass) approximately 120 nM) which decreases at high ionic strength. The rates for binding of Bcl-x(L) to cytochrome c, studied by stopped-flow kinetics at pH 7, show that the bimolecular rate constant for binding, k(bi) = 0.24 x 10(6) M(-1) s(-1). Values of the thermodynamic and kinetic parameters for Bcl-x(L)-cytochrome c interaction are very similar to those known for regulatory protein-protein interactions in apoptosis. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|