首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants
Authors:Ghanem Michel Edmond  Albacete Alfonso  Smigocki Ann C  Frébort Ivo  Pospísilová Hana  Martínez-Andújar Cristina  Acosta Manuel  Sánchez-Bravo José  Lutts Stanley  Dodd Ian C  Pérez-Alfocea Francisco
Institution:Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute (ELI), Université catholique de Louvain (UCL), B-1348 Louvain-la-Neuve, Belgium.
Abstract:Salinity limits crop productivity, in part by decreasing shoot concentrations of the growth-promoting and senescence-delaying hormones cytokinins. Since constitutive cytokinin overproduction may have pleiotropic effects on plant development, two approaches assessed whether specific root-localized transgenic IPT (a key enzyme for cytokinin biosynthesis) gene expression could substantially improve tomato plant growth and yield under salinity: transient root IPT induction (HSP70::IPT) and grafting wild-type (WT) shoots onto a constitutive IPT-expressing rootstock (WT/35S::IPT). Transient root IPT induction increased root, xylem sap, and leaf bioactive cytokinin concentrations 2- to 3-fold without shoot IPT gene expression. Although IPT induction reduced root biomass (by 15%) in control (non-salinized) plants, in salinized plants (100?mM NaCl for 22?d), increased cytokinin concentrations delayed stomatal closure and leaf senescence and almost doubled shoot growth (compared with WT plants), with concomitant increases in the essential nutrient K(+) (20%) and decreases in the toxic ion Na(+) (by 30%) and abscisic acid (by 20-40%) concentrations in transpiring mature leaves. Similarly, WT/35S::IPT plants (scion/rootstock) grown with 75?mM NaCl for 90?d had higher fruit trans-zeatin concentrations (1.5- to 2-fold) and yielded 30% more than WT/non-transformed plants. Enhancing root cytokinin synthesis modified both shoot hormonal and ionic status, thus ameliorating salinity-induced decreases in growth and yield.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号