首页 | 本学科首页   官方微博 | 高级检索  
     


Daidzein prevents the increase in CD4+CD28null T cells and B lymphopoesis in ovariectomized mice: a key mechanism for anti-osteoclastogenic effect
Authors:Tyagi Abdul Malik  Srivastava Kamini  Sharan Kunal  Yadav Dinesh  Maurya Rakesh  Singh Divya
Affiliation:Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Chattar Manzil, Lucknow, India.
Abstract:Estrogen deficiency leads to an upregulation of TNF-α producing T cells and B-lymphopoesis which augments osteoclastogenesis. Estrogen deficiency also increases the population of premature senescent CD4+CD28null T cells which secrete a higher amount of TNF-α thus leading to enhanced osteoclastogenesis. Isoflavonoids like daidzein and genistein are found mostly in soybeans, legumes, and peas. These share structural similarity with 17β-stradiol (E2) and have osteoprotective role. This study explores the effect of daidzein (Daid) on the proliferation of TNF-α producing T cells, premature senescent T cells and B cell lymphopoesis under estrogen deficient conditions. For this study adult Balb/c mice were treated with Daid at 10 mg/kg body weight dose by oral gavage daily post ovariectomy (Ovx). After six weeks animals were autopsied and bone marrow and spleen cells were collected for FACS analysis. Blood serum was collected for ELISA. It was observed that Ovx mice treated with Daid for six weeks show reduction in Ovx induced expansion of CD4+ T cells in bone marrow and spleen when analysed by flow cytometry. Estrogen deficiency led to increased prevalence of TNF-α secreting CD4+CD28null T cells, however, treatment with Daid increased the percentage of CD4+CD28+ T cells. Co-culture of CD4+CD28null T cells and bone marrow resulted in enhanced osteoclastogenesis as evident by increased tartarate resistant acid phosphatase (TRAP) expression, an osteoclast marker. However, treatment with Daid resulted in reduced osteoclastogenesis in CD4+CD28null T cells and bone marrow cell co-culture. Daid also regulated B lymphopoesis and decreased mRNA levels of RANKL in B220+ cells. Taken together, we propose that one of the mechanisms by which Daid prevents bone loss is by reversing the detrimental immune changes as a result of estrogen deficiency.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号