Abstract: | Treatment of cultured fibroblasts with thrombin results in the stimulation of cell division and lipid metabolism. Proteolytically active alpha-thrombin rapidly stimulates (a) release of arachidonic acid, (b) generation of inositol phosphates, and (c) increase in cellular diacylglycerol levels. Pretreatment of the fibroblasts with chymotrypsin before alpha-thrombin prevented the first two responses, (a) and (b), and reduced response c. Treatment of fibroblasts with gamma-thrombin, a proteolytic derivative of alpha-thrombin, produced a response indistinguishable from the alpha-thrombin treatment when preceded by chymotrypsin. These data support a model, similar to one for platelets [McGowan, E. B., & Detwiler, T. C. (1986) J. Biol. Chem. 261, 739-746], that fibroblasts possess two coupling mechanisms for the stimulation of lipid metabolism by thrombin. Similar to platelets, one mechanism, R1, mediates the stimulated release of arachidonic acid and is capable of activating Ni, a GTP-binding protein. R1 is inactivated by chymotrypsin and does not respond to gamma-thrombin. The other mechanism, R2, responds to gamma-thrombin and is not activated by chymotrypsin. In contrast to the mechanisms proposed for platelets, we demonstrate that the phospholipase C responsible for the hydrolysis of phosphoinositides is not activated by R2 but is activated via R1. Importantly, stimulation of either mechanism results in the elevation of cellular diacylglycerol. This indicates that the stimulated elevation of diacylglycerol, or those events dependent upon the elevation of diacylglycerol, is not a reliable indicator for establishing the hydrolysis of phosphoinositides.(ABSTRACT TRUNCATED AT 250 WORDS) |